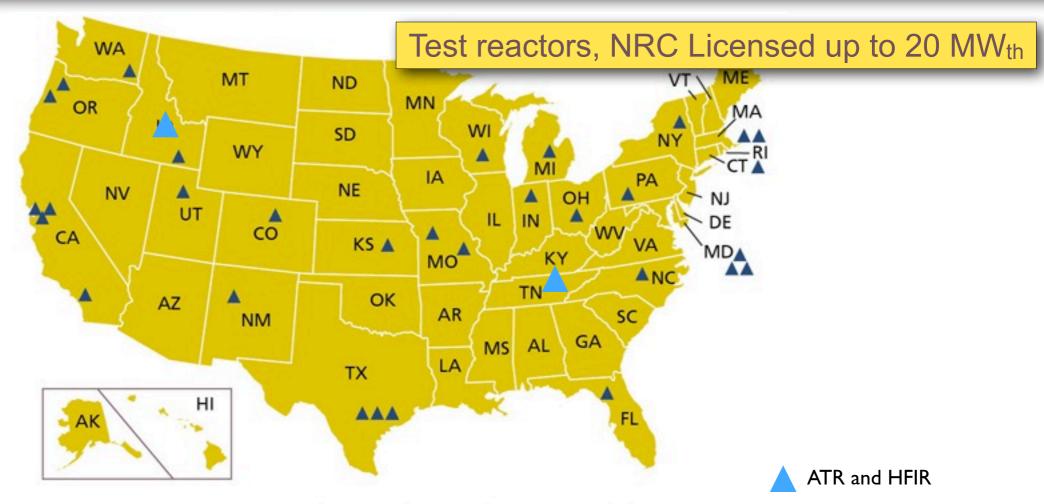
US Research and Test Reactors Pieter Mumm

National Institute of Standards and Technology

US Research and Test Reactors


Advantages of Research Reactors for neutrino experiments:

- Potentially HEU fuel (~constant spectrum, small Pu and ²³⁸U contribution)
- Compact cores (~meter)
- User facilities (well defined schedules, collaboration access)
- In many cases very well modeled (models available)
- Refueling cycles that provide the ability characterize natural backgrounds
- Onsite expertise/engineering/physics groups
- Fundamental science is part of mission

Challenges:

- Relatively low power (most $< 1 MW_{th}$)
- Constrained space near core and reactor correlated backgrounds
- Minimal overburden

US Research and Test Reactors (not including Navy, see next talk)

▲ Licensed/Currently Operating (31) + order 9 DOE/Military reactors

Research Reactors Are a Unique National Resource

RRs are valuable sources of neutrons providing multidisciplinary research and educational opportunities

	ATR	Light water, tank	< 250 MW _{th} (120 nom.)
These are the 5 US HEU reactors	HFIR	Light water, pool	85 MW _{th}
	NIST	Heavy water, tank	20 MW _{th}
	Missouri	Light water, pool	I0 MW _{th}
(MIT	LW moderator/HW	5 MW _{th}

Idaho National Lab: ATR

The World's Largest Concentration of Reactors:

More than 50 nuclear reactors have been built and operated there--the largest concentration of reactors in the world.

The First Peaceful Use of Nuclear Power:

In 1951, the first usable amounts of electricity were generated by nuclear power by Experimental Breeder Reactor Number I (EBR-I)

Advanced Test Reactor (1967 - present)

Located about 1 hour drive West from INL main campus

Elevation: 1500 m

Primarily mission:

Materials testing and other, prototype reactor work.

USA's only source of Cobalt-60.

Flexible design:

"Four Leaf Clover" allows for a variety of testing locations.

Different flux in various locations

Experiments can be run at their own temperature and pressure.

National Scientific User Facility:

Primarily a center for nuclear fuels and materials research

Idaho National Lab: ATR

Reactor Type

250 MW_{th} design, Pressurized, light-water moderated and cooled; beryllium reflector (typically power 110 - 120 MW_{th})

Power monitored w/ thermo-hydraulic system

Detailed core model based on the Serpent reactor simulation package:
calculated for each cycle

Reactor Vessel

12 ft (3.65 m) diameter cylinder, 36 ft (10.67 m) high stainless steel

Reactor Core

shim control cylinders

4 ft (1.22 m) (diameter and height) 40 fuel elements

~5.5 m below grade

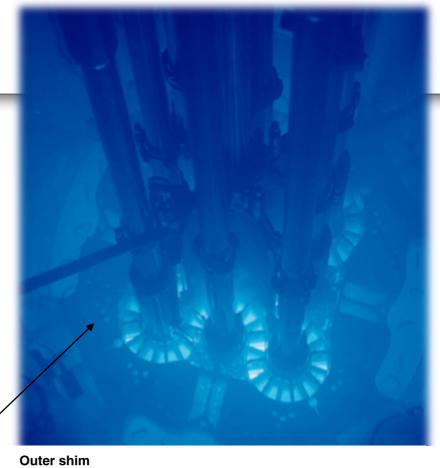
High neutron flux – $1x10^{15}$ n/cm²-s thermal and $5x10^{14}$ n/cm²-s fast

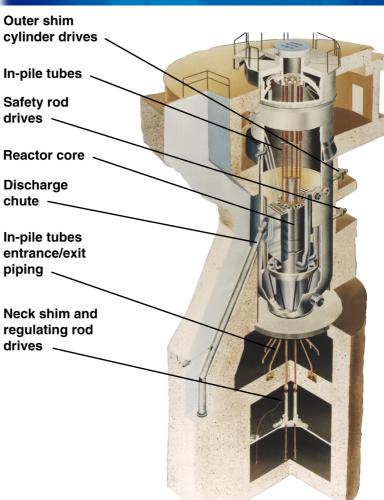
Constant axial power profile – rotating control drums instead of vertical control rods

Power tilt capability between all four corners of core (≤3:1 ratio)

Extreme case this is a shift of ~ 7 cm.

Operating Cycles


Standard cycle is 6 - 8 weeks

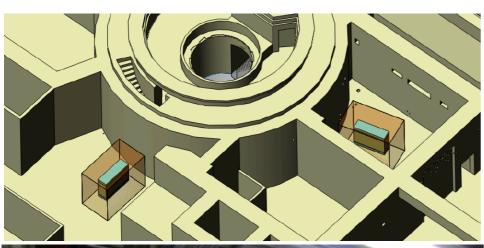

Occasional short high-power cycles of 2 weeks

Standard outages are 1 - 2 weeks

Operations for approximately 250+ days per year

Core internals change-out every 7 - 10 years

ATR: Multiple Near and far locations


Preferred 'near' location:

~7 m to core center

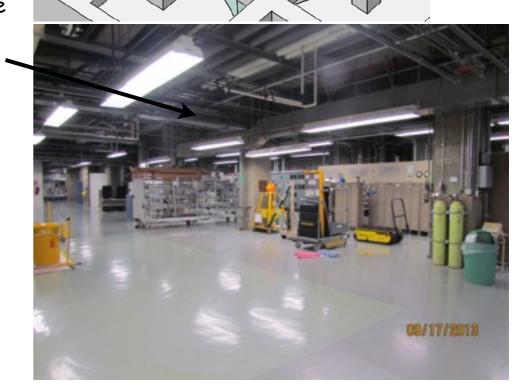
5.8 m below grade, no significant height restriction

Access via overhead crane

3500 lb/sqf except over hatch

Water pipe from core (Na-22 gammas)

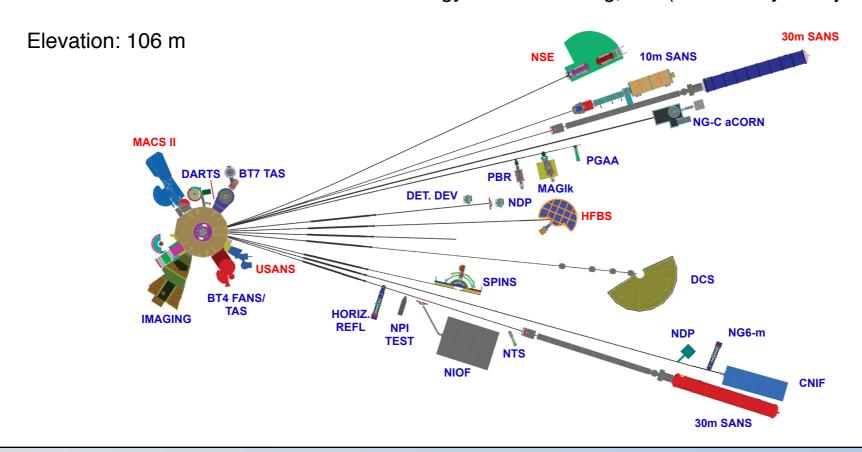
Access hatch


'Far' location: Staging area

~18 m to core center

11.6 m below grade

Roughly 3 m vertical clearance


500 and 3500 lb/sqf

US Research and Test Reactors: NIST, NBSR

National Institute of Standards and Technology in Gaithersburg, MD (serviced by 3 major airports)

US Research and Test Reactors: NBSR

Allen Astin proposed NBSR: 1958

Design FY1961: \$0.7M Construction FY1962: \$8.0M

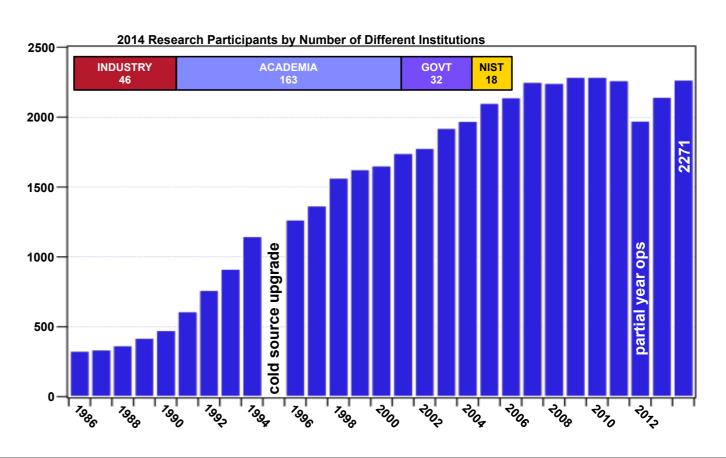
Critical in 1967, 10 MW_{th} regular operations '69

Running at 20 MW_{th} since '84

Just re-licensed

Primary mission of the NCNR is to assure the national availability of neutron measurement capabilities:

Neutron scattering
Neutron activation analysis
Neutron Imaging
Fundamental science


International user program 28 beam instruments ~2,000 users/year ~300 publications

Additional NIST resources:

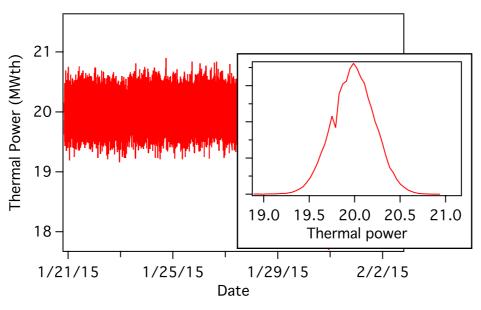
Low background counting
Metrology
Calibrations:
e.g. ~1% activity neutron sources

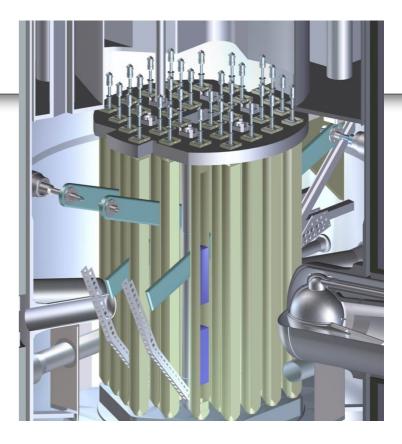
Allen Astin, Harry Landon, Carl Muehlhause, Bob Carter, Irl Schoonover

Bureau of Standards Reactor (NBSR)

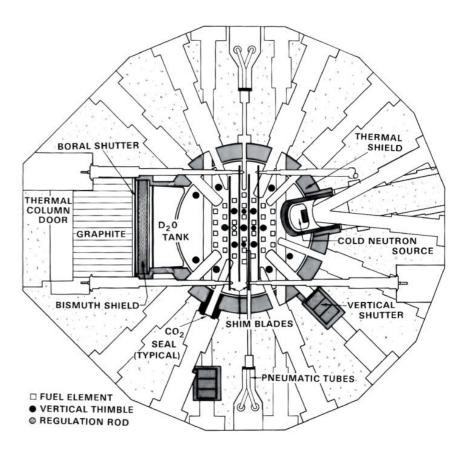
Reactor Type

20 MW_{th} split core HEU reactor (~93% ²³⁵U) Heavy water moderated. Maximum neutron density ~ few x 1014 power held to 2% Power monitored w/ thermo-hydraulic system

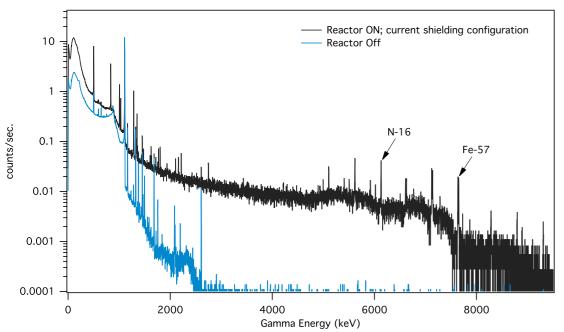

Reactor Core

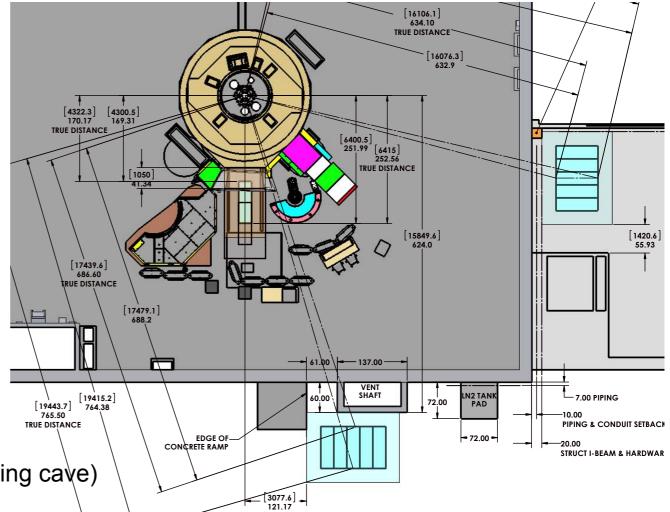

Hexagonal array 1 m across, ~0.8 m high 30 fuel elements
Every refueling cycle 2 elements replaced, the rest are reshuffled yielding a constant burn pattern

Operating Cycles


Standard cycle is 7 weeks (38 days)
Refueling/maintenance 11 days
99% reliability
Operations for approximately 250+ days per year

PLAN VIEW OF NBS REACTOR




NBSR: Multiple near and far locations available

Thermal column

Approximate near detector option (w/ crate-sized shielding cave)

Near location:

~3.8 m to core center, at grade
15 ton overhead crane service
1,000 - 2,000 psf loading
Inside confinement building - no flammables
Direct truck and forklift access

Far location:

~16 m to core center, approximately at grade 10 ton overhead crane service (high-bay) 1,000 psf loading

ATR, NIST, and HFIR: Core and flux comparison

Typical commercial core

Site	Power (MW_{th})	Duty Cycle	Near De	tector *	Far Det	tector *
			Baseline (m)	Avg. Flux	Baseline (m)	Avg. Flux
NIST	20	68%	3.9	1.0	15.5	1.0
HFIR	85	41%	6.7	0.96	18	1.93
ATR	120	68%	9.5	1.31	18.5	4.30
0.0	1.0 d -0.8 d -0.6 d -0.4 d -0.2 d -0.0 d	0.0 -0.6 -0.6	0.9 0.8 No. 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0.0 0.6 (m) O.0 0.6 (m) ATR, INI	0.0	HFIR 6 0.0 0.6 (m)	-1.0 -0.8 -0.6 -0.4 -0.2 -0.0

^{*} Baselines listed are somewhat inaccurate to subsequent specification of detector design.

ATR, NIST, and HFIR: Backgrounds inter-comparison

Expected neutrino signal (near) ~1000/day

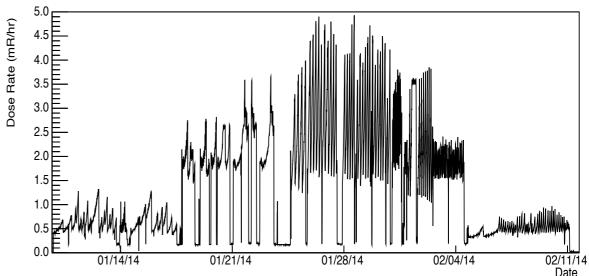
Near reactor w/ little to no overburden

Accidental Coincidences

- Gammas (primarily neutron capture)
- Fast/thermal neutrons (reactor and cosmogenic)

Muon rates				
Reactor	Rate at Near Location (Hz	Rate at Far Location (Hz)		
ATR	0.78 ± 0.03	0.68 ± 0.02		
HFIR	0.59 ± 0.02	0.71 ± 0.03		
NIST	0.56 ± 0.01	0.69 ± 0.01		
		Alin.		

Fast neutron rates 1112 Correlated events


- Fast neutrons (reactor and cosmogenic)
- Cosmics (muons/neutrons + secondaries)
- Radioisotopes (e.g. 8He, 9Li)

Detailed directional background surveys carried out at all locations

Counts/MeV/s	— ATR Near — HFIR Near — NIST Near
S 10 10 10 10 10 10 10 10 10 10 10 10 10	
10 ⁻¹ 2 4 6 8	10 12 Energy (MeV)

Location	Rate $4 - 14.5 \text{ MeV (mHz)}$	Rate 10-14.5 MeV (n.Hz)
ATR Near	4.7 ± 0.3	1.0 ± 0.1
HFIR Near	2.2 ± 0.2	0.3 ± 0.1
NIST Near	2.8 ± 0.2	0.8 ± 0.1
ATR Far	1.8 ± 0.2	0.4 ± 0.1
HFIR Far	3.5 ± 0.2	0.6 ± 0.1
NIST Far	2.8 ± 0.2	0.8 ± 0.1

Time variation at NIST

PROSPECT has a comprehensive backgrounds paper in progress

US Research and Test Reactors

Conclusions:

- Conducted a comprehensive survey of likely US locations.
 - Backgrounds
 - Engineering/logistics
- Several US sites offer opportunities for neutrino-physics experiments
 - Short baselines allow for oscillation experiments
- Opportunities for 10 ton scale experiments (Multi-phase, extended sensitivity)
 - Required space and infrastructure exist at three sites
- ATR, NIST and HFIR have all been enthusiastically in support of hosting experiments of these types
- Prototyping and test deployments currently at NIST and HFIR